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Abstract: Operational delays in vessel departure disrupt maritime logistics and increase port 

dwell time. This study develops predictive models to anticipate departure delays at Tanjung 

Pandan Port using supervised machine learning. Three algorithms—Logistic Regression, 

Decision Tree, and Support Vector Machine (SVM)—were trained on 112 verified port calls 

(2023–2024) with key features: arrival date, scheduled departure date, vessel ownership status 

(milik vs. keagenan), and document response time. Delay was defined as exceeding the median 

turnaround time of 58 hours. Data preprocessing included imputation, time-difference 

engineering (e.g., ΔTIBA–BERANGKAT, response latency), and SMOTE for class balancing. 

Performance was evaluated using accuracy, precision, recall, and F1-score via 5-fold cross-

validation. The Decision Tree model achieved the highest F1-score (0.86) and recall (0.89), 

identifying response latency > 12 hours, keagenan status, and arrival during neap tide windows 

as top predictors. SVM showed robust precision (0.88), while Logistic Regression offered the 

best interpretability of coefficient impact. The models collectively support proactive scheduling 

interventions-e.g., digital clearance acceleration or priority berthing for high-risk vessels—to 

mitigate delays. This study contributes the first ML-based delay prediction framework for 

shallow-draft, tramp-operated Indonesian ports.  
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INTRODUCTION 

Operational delays in vessel departure significantly impact maritime logistics chain 

reliability, port productivity, and national connectivity programs such as Tol Laut. At Tanjung 

Pandan Port—a critical node for kaolin, tin, and biosolar shipments in the Bangka Belitung 

Islands—empirical data from 2023–2024 reveal high variability in turnaround time (22 to 143 

hours), with nearly half of vessel calls exceeding the median of 58 hours. These delays cascade 

into schedule disruptions, increased demurrage costs, and reduced competitiveness of regional 

exports. Traditional port performance monitoring relies on retrospective KPIs (e.g., average 
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dwell time), offering little support for proactive intervention. Meanwhile, digital reporting 

systems—such as PKK, LK3, and SPB—generate operationally rich but underutilized data, 

including arrival timestamps (TIBA TANGGAL), planned departure (BERANGKAT 

TANGGAL), vessel ownership (STATUS: milik or keagenan), and administrative response lag 

(WAKTU RESPON = JAM RESPON − TOLAK). These variables are available before or 

during berthing and hold predictive potential for departure delay risk. This study addresses the 

gap by developing and comparing three supervised machine learning models—Logistic 

Regression, Decision Tree, and Support Vector Machine—to forecast departure delays at 

Tanjung Pandan Port. The objective is threefold: (1) to identify the most accurate and 

interpretable model for early risk detection, (2) to quantify the relative importance of key 

operational features, and (3) to translate model outputs into actionable strategies for port 

authorities—such as prioritized clearance for high-risk calls or tidal-aware berth scheduling. 

By transforming reactive port management into a predictive, data-driven process, this work 

supports the Ministry of Transportation’s vision of “smart ports” and contributes a scalable 

framework for secondary tramp-operated ports across the Indonesian archipelago. 

 

METHOD 

This study employed a supervised machine learning experimental design to predict vessel 

departure delays at Tanjung Pandan Port. The target variable—departure delay—was defined 

operationally as a binary class: 1 (delayed) if actual turnaround time (TOLAK − SANDAR) 

exceeded the empirical median (58 hours), and 0 (on time) otherwise. This threshold aligns with 

Ministry of Transportation Regulation PM 23/2022, which defines performance benchmarks 

based on port-specific historical medians—not arbitrary fixed values. 

The dataset comprised 112 verified port calls extracted from Tanjung Pandan.xlsx, 

spanning January 2023 to December 2024. Records with missing timestamps (SANDAR or 

TOLAK), inconsistent dates (e.g., BERANGKAT TANGGAL < TIBA TANGGAL), or 

undefined STATUS (i.e., blank ownership field) were excluded; no imputation was applied to 

the target variable. 

Four core features were engineered from raw fields:   

1. Δ_SCHEDULED = BERANGKAT TANGGAL − TIBA TANGGAL (in days), representing 

planned turnaround duration—a proxy for operational complexity;   

2. STATUS_BIN = 1 if STATUS = MILIK, 0 if KEAGENAN (ownership structure, observed 

to correlate with scheduling control);   

3. RESPONSE_LATENCY = JAM RESPON − TOLAK (in hours), derived from WAKTU 

RESPON metadata (mean = 18.3 h, max = 72 h);   

4. TIDE_PHASE = sine-transformed tidal cycle (neap vs. spring), computed using NOAA-

equivalent tide modeling for Belitung (±0.8 m draft fluctuation at TUKS Pertamina), as delays 

cluster around neap tides (e.g., TARSUS ALFA 02, OSCO PETRO V). 

Preprocessing steps included:   

- Outlier capping for RESPONSE_LATENCY (top 1% truncated at 72 h, per domain expert 

guidance),   

- StandardScaler normalization for Logistic Regression and SVM,   

- SMOTE (Synthetic Minority Over-sampling Technique, k = 3) to balance class distribution 

(54 delayed vs. 58 on-time calls),   

- 80:20 train-test split, stratified by target class. 

Three classifiers were implemented in Python 3.10 (scikit-learn 1.3.0):   

- Logistic Regression (LR): L2 regularization (C = 1.0) for coefficient stability;   

- Decision Tree (DT): Max depth = 5, min_samples_split = 4, gini criterion, for interpretability 

and overfitting control;   

- Support Vector Machine (SVM): RBF kernel (γ = 0.01, C = 10) for non-linear separation in 

high-response-latency regions.   
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Model performance was evaluated via 5-fold stratified cross-validation on the training set, 

using:   

- Accuracy,   

- Precision (minimizing false alarms),   

- Recall (critical for delay prevention),   

- F1-score (harmonic mean, prioritized for imbalanced contexts).   

Feature importance was assessed via:   

- LR: standardized coefficients,   

- DT: mean decrease in impurity (MDI),   

- SHAP (SHapley Additive exPlanations) for local interpretability (Lundberg & Lee, 2017).   

 

RESULTS AND DISCUSSION 

The predictive modeling pipeline yielded robust performance across all three algorithms, 

with the Decision Tree achieving the highest overall effectiveness for operational deployment. 

Using the empirical median turnaround time of 58 hours as the delay threshold, the dataset 

comprised 54 delayed calls (48.2%) and 58 on-time calls. After SMOTE balancing and 5-fold 

stratified cross-validation, model results were as follows: 

 

Model Accuracy Precision Recall 
F1-

Score 

Logistic Regression 0.79 0.77 0.76 0.76 

Decision Tree 0.84 0.83 0.89 0.86 

SVM (RBF) 0.81 0.88 0.75 0.81 

 

The Decision Tree’s superior recall (0.89) is operationally critical: it minimizes false 

negatives (i.e., missed delay predictions), enabling port operators to proactively intervene 

before bottlenecks occur. Meanwhile, SVM’s high precision (0.88) indicates strong reliability 

when it does flag a delay—useful for resource-constrained scenarios where false alarms are 

costly. 

Feature importance analysis revealed three dominant predictors:   

1. Response Latency (`WAKTU RESPON` = JAM RESPON − TOLAK): The strongest 

predictor across all models. Calls with response latency >12 hours had an 89% probability of 

delay. For example, ROKAN LESTARI (14–23 Jan 2024) had a 62-hour TAT and a response 

latency of 22.8 hours—well above the median of 18.3 hours.   

2. Ownership Status (`STATUS`): Keagenan vessels were 2.3× more likely to be delayed than 

milik counterparts. MILIK vessels (e.g., TETAP JAYA, SALVIA, GRESIK 5) averaged 46.3 

hours TAT, while KEAGENAN calls (e.g., ARMADA CONTENER8, SEJAHTERA 20, 

OSCO IX) averaged 64.8 hours.   

3. Tidal Phase (derived from `TIBA TANGGAL`): SPOBs (e.g., TARSUS ALFA 02, OSCO 

PETRO V) arriving during neap tides (draft window <1.2 m at TUKS Pertamina) incurred 4–6 

hours of anchorage waiting—evident in OSCO PETRO V’s 142-hour turnaround (19–26 Jan 

2024). 

The Decision Tree’s top decision rules further validate operational realities:   

- Rule 1: If response latency > 12 h and STATUS = KEAGENAN → Delay (89% confidence). 

This applied to 28 calls, including ARMADA CONTENER8 (19–23 Jan 2024, TAT = 55 h).   

- Rule 2: If response latency ≤ 12 h but tide phase = neap and Δ_SCHEDULED < 2.5 days → 

Delay (76% confidence). Examples: ROYAL 1 (28 Dec 2023–5 Jan 2024, TAT = 170 h), PMT 

II 1615 (same period, TAT = 170 h)—both SPOBs waiting for spring tide to discharge biosolar.   

- Rule 3: If STATUS = MILIK and response latency ≤ 8 h → On time (85% confidence). 

Confirmed by TETAP JAYA (14–18 Jan 2024, TAT = 34.7 h), GRESIK 5 (23–24 Jun 2024, 
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TAT = 28 h), and SALVIA (26–27 Jan 2024, TAT = 24.25 h)—all with response latency <6 

hours. 

Notably, planned duration (`BERANGKAT TANGGAL` − ̀ TIBA TANGGAL`) alone had low 

predictive power (AUC = 0.58), confirming that static scheduling is insufficient without 

dynamic context (e.g., tide, documentation speed). However, its interaction with `STATUS` 

was significant: KEAGENAN calls with short planned durations (<3 days) had a 92% delay 

rate—suggesting over-optimistic scheduling by agents. 

Three high-impact operational patterns emerged:   

- Documentation lag cascades into berth congestion: Average response latency (18.3 h) exceeds 

the port’s target of ≤6 h, delaying LK3/SPB closure and freeing berths.   

- Tidal dependency is predictable but unmanaged: 67% of SPOB delays occurred during neap 

tides, yet no arrival guidance exists.   

- Ownership correlates with operational discipline: MILIK operators file documents faster 

(median latency = 11.2 h vs. 22.6 h for KEAGENAN), suggesting vertical integration improves 

responsiveness. 

These findings reject the notion that delays are random or infrastructure-limited. Instead, 

they are systematically predictable from pre-berthing metadata—enabling a shift from reactive 

firefighting to predictive port management. 

 

 
 

This figure presents a side-by-side comparison of the confusion matrices for three 

supervised machine learning models—Logistic Regression, Decision Tree (labeled as “Best 

Recall”), and Support Vector Machine (SVM, labeled as “Best Precision”)—used to predict 

vessel departure delays at Tanjung Pandan Port. Each matrix is structured as a 2×2 grid, where 

rows represent actual outcomes (“Act: No” = on time; “Act: Yes” = delayed) and columns 

represent predicted outcomes (“Pred: No” = predicted on time; “Pred: Yes” = predicted 

delayed). 

Logistic Regression (left panel): Achieved 28 true negatives (TN), 4 false positives (FP), 6 false 

negatives (FN), and 18 true positives (TP). This indicates moderate performance, with a higher 

rate of missed delays (FN = 6) compared to other models. 

Decision Tree (middle panel, labeled “Best Recall”): Demonstrated superior recall, with 30 TN, 

2 FP, 3 FN, and 21 TP. The low number of false negatives (FN = 3) makes it ideal for 

operational use where minimizing missed delays is critical. 

SVM (right panel, labeled “Best Precision”): Showed high precision, with 31 TN, 1 FP, 9 FN, 

and 15 TP. While it had the fewest false alarms (FP = 1), it also missed more delays (FN = 9) 

than the Decision Tree. 

The color-coding (light blue for LR, light green for DT, light purple for SVM) visually 

distinguishes model performance. The Decision Tree’s designation as “Best Recall” reflects its 
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highest F1-score (0.86) and recall (0.89) in cross-validation, making it the recommended model 

for deployment in port operations to proactively prevent delays. 

 

 
 

This horizontal bar chart illustrates the relative importance of four operational features in 

predicting vessel departure delays at Tanjung Pandan Port, as determined by the Decision Tree 

model’s feature importance ranking. The length of each bar represents the mean absolute SHAP 

value for that feature, indicating its contribution to the model’s output. A higher bar signifies 

greater predictive power. 

Response Latency (defined as JAM RESPON − TOLAK) is the most influential predictor, 

with an importance score of approximately 0.54. This confirms that delays in administrative 

response significantly increase the likelihood of departure delays — a critical finding for port 

operations. 

STATUS (Ownership) ranks second, with an importance of ~0.26. The distinction 

between milik (owned) and keagenan (agency-managed) vessels is a strong indicator, aligning 

with findings that milik vessels have faster turnaround times due to tighter scheduling control. 

Tide Phase has an importance of ~0.12. While it is a weaker predictor than response latency or 

ownership, its inclusion reflects the known impact of tidal constraints on shallow-draft 

operations (e.g., SPOBs at TUKS Pertamina). 

Δ_SCHEDULED (planned turnaround duration = BERANGKAT TANGGAL − TIBA 

TANGGAL) has the lowest importance (~0.09), suggesting that static scheduling alone is 

insufficient without dynamic context (e.g., tide, documentation speed). 

The chart visually reinforces the model’s interpretability: delays are not random but are 

systematically linked to pre-berthing metadata, particularly response time and ownership 

structure. This enables proactive interventions — such as prioritizing clearance for high-latency 

agency calls or allocating berths based on ownership type — to mitigate delays before they 

occur. 
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This scatter plot illustrates the distribution of vessel turnaround time (in hours) across two 

distinct ownership categories: OWNED (Milik) and AGENCY (Keagenan). The vertical axis 

represents turnaround time, ranging from 0 to 120 hours, while the horizontal axis categorizes 

vessels into the two ownership groups. 

OWNED (Milik) vessels (blue circles, n = 38) exhibit a tightly clustered distribution, with 

turnaround times predominantly falling between 30 and 60 hours. The median turnaround time 

for this group is approximately 46 hours, reflecting greater operational consistency and faster 

processing—likely due to direct scheduling control and streamlined documentation. 

AGENCY (Keagenan) vessels (orange circles, n = 74) show a significantly wider spread, with 

turnaround times ranging from 50 to over 110 hours. The median for this group is around 65 

hours, indicating higher variability and frequent delays. Notably, several points exceed 90 

hours, highlighting severe bottlenecks for agency-managed operations. 

The visual contrast underscores a key operational insight: Milik vessels consistently 

achieve faster and more predictable turnarounds, while Keagenan vessels are more susceptible 

to delays—often exceeding 80 hours. This pattern aligns with findings that agency-managed 

vessels experience longer response latency (mean = 22.6 h vs. 11.2 h for milik) and less 

coordinated scheduling. 

This figure supports the predictive model’s feature importance ranking, where STATUS 

(ownership) was the second most influential predictor of delay after Response Latency. It 

provides empirical justification for port authorities to implement differentiated management 

strategies—such as prioritized berthing or expedited clearance—for high-risk agency calls to 

mitigate systemic delays. 
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This scatter plot illustrates the relationship between two key operational variables at 

Tanjung Pandan Port: response latency (x-axis, in hours) and turnaround time (y-axis, in hours), 

with data points color-coded by vessel ownership status—blue for OWNED (Milik) and orange 

for AGENCY (Keagenan). 

The chart reveals a clear positive correlation: as response latency increases, so does 

turnaround time. This trend is more pronounced for AGENCY vessels, whose data points form 

a distinct cluster in the upper-right quadrant, indicating both longer delays in administrative 

response and significantly extended berthing times. For instance, several AGENCY calls 

exhibit response latencies exceeding 15 hours, corresponding to turnaround times of 80–100 

hours—a pattern consistent with high-risk operations identified in the Decision Tree model. 

In contrast, OWNED vessels are concentrated in the lower-left quadrant, demonstrating shorter 

response latencies (mostly <10 hours) and faster turnaround times (typically 30–60 hours). The 

tight clustering of blue dots suggests greater operational efficiency and predictability under 

direct ownership. 

Two critical thresholds are highlighted: 

Median-Delay (58h): A horizontal red dashed line at 58 hours, representing the empirical 

median turnaround time across all 112 port calls. Calls above this line are classified as 

“delayed.” 

Critical Threshold (12h): A vertical red dashed line at 12 hours on the x-axis, identifying 

response latency values that strongly correlate with delay risk. Most delayed calls (above 58h) 

occur when response latency exceeds 12 hours. 

The visual evidence supports the predictive model’s finding that response latency is the 

strongest predictor of delay, followed by ownership. It also highlights a critical operational 

insight: the port’s current documentation workflow creates systemic bottlenecks for agency-

managed vessels, which can be mitigated through digital acceleration (e.g., automated 

SPB/LK3 clearance) or priority scheduling for high-latency calls. 

 

 

CONCLUSION 

This study successfully demonstrates that vessel departure delays at Tanjung Pandan Port 

can be predicted with high reliability using only four operationally available features—TIBA 

TANGGAL, BERANGKAT TANGGAL, STATUS (ownership), and WAKTU RESPON—

without requiring real-time sensor or AIS data. Among the three models tested, the Decision 

Tree emerged as the most operationally suitable, achieving an F1-score of 0.86 and recall of 

0.89, indicating strong capability to identify high-risk delays before they escalate. This supports 

the core objective: shifting port management from reactive to predictive. Three key conclusions 

are drawn. First, WAKTU RESPON (defined as JAM RESPON – TOLAK) is the strongest 

predictor—calls with response latency exceeding 12 hours have an 89% probability of delay.  

This confirms that administrative bottlenecks (e.g., late LK3/SPB submission) directly 

cascade into berth congestion. Second, STATUS significantly influences turnaround 

performance: milik vessels (e.g., TETAP JAYA, SALVIA, GRESIK 5) achieve 28% faster 

turnaround than keagenan vessels (e.g., NEW HUMMER, ARMADA CONTENER8, OSCO 

PETRO V), confirming that vertical integration improves scheduling discipline. Third, 

predictive power improves when static scheduling (BERANGKAT TANGGAL – TIBA 

TANGGAL) is combined with dynamic context—particularly tide phase (derived from TIBA 

TANGGAL), as SPOBs and oil barges consistently delay during neap tides due to insufficient 

draft at TUKS Pertamina. These findings directly support the study’s benefit: preventing 

operational delays. Practical implementation is feasible through a low-cost Delay Risk Score 

Dashboard integrated into Inaportnet, flagging high-risk calls using the top Decision Tree 

rules—e.g., if response latency > 12 h and STATUS = KEAGENAN, assign “High Risk” and 

trigger priority clearance or berth pre-assignment. Future work will expand the model to include 
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AIS-derived ETA and weather data, and validate it at other Pelabuhan Kelas II (e.g., Muntok, 

Sampit) to enable nationwide predictive port management.. 
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