Optimasi Parameter Proses Fabrikasi Komponen Mekanis Menggunakan Metode Taguchi Terintegrasi dengan Algoritma Particle Swarm Optimization
DOI:
https://doi.org/10.38035/dit.v2i4.1789Keywords:
Metode Taguchi, Particle Swarm Optimization, Fabrikasi Komponen Mekanis, Optimasi Parameter, Kualitas PermukaanAbstract
Penelitian ini menyajikan pendekatan baru dalam optimasi parameter proses fabrikasi komponen mekanis dengan mengintegrasikan metode Taguchi dan algoritma Particle Swarm Optimization (PSO). Proses fabrikasi komponen mekanis seringkali melibatkan banyak parameter yang saling mempengaruhi dan sulit untuk dioptimalkan secara simultan. Metode Taguchi telah terbukti efektif dalam mengurangi variasi proses dan meningkatkan kualitas produk, namun memiliki keterbatasan dalam mencari solusi optimal global. Untuk mengatasi keterbatasan tersebut, penelitian ini mengusulkan integrasi metode Taguchi dengan algoritma PSO yang mampu melakukan pencarian solusi optimal secara efisien dalam ruang pencarian multi-dimensi. Eksperimen dilakukan pada proses pemesinan komponen mekanis dengan parameter yang dioptimalkan meliputi kecepatan potong, kecepatan makan, kedalaman potong, dan jenis pendingin. Hasil penelitian menunjukkan bahwa pendekatan terintegrasi Taguchi-PSO mampu menghasilkan kombinasi parameter optimal yang meningkatkan kualitas permukaan sebesar 28,7% dan mengurangi waktu pemesinan sebesar 18,3% dibandingkan dengan metode konvensional. Model hibrid yang diusulkan juga menunjukkan konvergensi yang lebih cepat dan solusi yang lebih robust terhadap gangguan eksternal. Penelitian ini memberikan kontribusi signifikan dalam pengembangan metodologi optimasi parameter untuk meningkatkan efisiensi dan kualitas proses fabrikasi komponen mekanis.
References
Asiltürk, I., & Çunka?, M. (2011). Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Systems with Applications, 38(5), 5826-5832. https://doi.org/10.1016/j.eswa.2010.11.071
Bi, Z. M., Liu, Y., Baumgartner, B., Culver, E., Sorokin, J. N., Peters, A., Cox, B., Hunnicutt, J., Yurek, J., & O'Shaughnessey, S. (2021). Redefining the roles of manufacturing engineers for Industry 4.0 based on Internet of Things. Journal of Industrial Information Integration, 23, 100220. https://doi.org/10.1016/j.jii.2021.100220
Chen, X., Zhang, J., Lin, X., & Liu, W. (2020). Hybridizing Taguchi method and particle swarm optimization for parameter optimization of laser micro-machining. International Journal of Precision Engineering and Manufacturing, 21(12), 2271-2280. https://doi.org/10.1007/s12541-020-00424-7
Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. https://doi.org/10.1109/4235.985692
Das, B., Roy, S., Rai, R. N., & Saha, S. C. (2022). Investigation on parametric optimization of EDM on Inconel 718 superalloy using Taguchi-PSO hybrid approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(1), 1-13. https://doi.org/10.1007/s40430-021-03310-z
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE. https://doi.org/10.1109/MHS.1995.494215
Gupta, M. K., Song, Q., Liu, Z., Sarikaya, M., Mia, M., Jamil, M., Singla, A. K., Bansal, A., & Pimenov, D. Y. (2021). Machining characteristics based life cycle assessment: A comprehensive review. Journal of Cleaner Production, 326, 129325. https://doi.org/10.1016/j.jclepro.2021.129325
Groover, M. P. (2020). Fundamentals of modern manufacturing: materials, processes, and systems (7th ed.). John Wiley & Sons.
Hidayat, H. (2022, July 6). Optimasi Parameter Proses Anodisasi Aluminium 6061 untuk Komponen Otomotif. Jurnal Penelitian Enjiniring, 25(2), 85-91. https://doi.org/10.25042/jpe.112021.01
Kalpakjian, S., & Schmid, S. R. (2021). Manufacturing engineering and technology (8th ed.). Pearson.
Khanna, N., & Davim, J. P. (2020). Design of experiments application in machining titanium alloys for aerospace components. Measurement, 146, 80-104. https://doi.org/10.1016/j.measurement.2019.04.082
Lin, C. L., & Lin, J. L. (2018). The use of orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. International Journal of Machine Tools and Manufacture, 42(2), 237-244. https://doi.org/10.1016/S0890-6955(01)00107-9
Mia, M., Królczyk, G., Maruda, R., & Wojciechowski, S. (2019). Intelligent optimization of hard-turning parameters using evolutionary algorithms for smart manufacturing. Materials, 12(6), 879. https://doi.org/10.3390/ma12060879
Panda, A., Sahoo, A. K., Rout, A. K., Das, R., & Sudhakar, P. (2020). Tribological aspects of Inconel 718: A review. Materials Today: Proceedings, 33, 5557-5563. https://doi.org/10.1016/j.matpr.2020.04.074
Permana, D. I., & Yayat. (2019). Optimasi Parameter Permesinan Terhadap Tingkat Kekasaran Permukaan Aluminium Proses Pembubutan Dengan Metode Taguchi. METAL: Jurnal Sistem Mekanik dan Termal, 3(1), 10-16.
Pristiansyah, P., Hasdiansah, H., & Sugiyarto, S. (2019). Optimasi Parameter Proses 3D Printing FDM Terhadap Akurasi Dimensi Menggunakan Filament Eflex. Manutech: Jurnal Teknologi Manufaktur, 11(01), 33-40. https://doi.org/10.33504/manutech.v11i01.98
Pugazhenthi, A., Kanagaraj, A., Dinaharan, I., & Vijaya Ramnath, B. (2022). Optimization of turning parameters in Inconel 718 alloy using Taguchi integrated with PSO and simulated annealing algorithms. The International Journal of Advanced Manufacturing Technology, 118(5), 1713-1728. https://doi.org/10.1007/s00170-021-08202-z
Putranto, R. D. (2022). Pengembangan prototype in-wheel brushless DC motor 2 kW sebagai sistem powertrain pada skuter elektrik [Tesis, Institut Teknologi Sepuluh Nopember]. Departemen Teknik Mesin, Fakultas Teknologi Industri Dan Rekayasa Sistem.
Ridhawati, A. (2020). Model persediaan dan penetapan harga multi-produk pada fresh goods dengan algoritma artificial bee colony (ABC) [Tesis, Institut Teknologi Sepuluh Nopember]. Program Magister Manajemen Logistik dan Rantai Pasok, Departemen Teknik Sistem dan Industri, Fakultas Teknologi Industri dan Rekayasa Sistem.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gevan Naufal Wala

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright :
Authors who publish their manuscripts in this journal agree to the following conditions:
- Copyright in each article belongs to the author.
- The author acknowledges that the DIT has the right to be the first to publish under a Creative Commons Attribution 4.0 International license (Attribution 4.0 International CC BY 4.0).
- Authors can submit articles separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal to other versions (for example, sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time at DIT.