Komparasi Metode LSTM dan Random Forest dalam Prediksi Waktu Sandar Kapal untuk Optimasi Alokasi Dermaga: Studi Kasus Pelabuhan Tanjung Pandan
DOI:
https://doi.org/10.38035/dit.v3i2.2929Keywords:
Alokasi Dermaga, LSTM, Tanjung Pandan, Prediksi Waktu Sandar, Random ForestAbstract
Efisiensi operasional pelabuhan sangat bergantung pada akurasi prediksi waktu sandar kapal, terutama di Pelabuhan Tanjung Pandan yang memiliki karakteristik tramp trade dengan variasi kapal yang tinggi. Penelitian ini bertujuan membandingkan kinerja metode Long Short-Term Memory (LSTM) dan Random Forest dalam memprediksi durasi sandar kapal sebagai dasar optimasi alokasi dermaga. Menggunakan data operasional periode 2023–2024 (125 observasi), variabel input mencakup Gross Tonnage (GT), Length Overall (LOA), serta tanggal tiba dan berangkat; sedangkan output adalah durasi sandar dalam jam. Data diproses melalui pembersihan, rekayasa fitur, dan normalisasi, lalu dibagi menjadi 80% latih dan 20% uji. Evaluasi dilakukan menggunakan RMSE, MAE, dan R². Hasil menunjukkan bahwa Random Forest mengungguli LSTM dengan RMSE 5,34 jam (vs. 7,82), MAE 4,07 jam (vs. 5,91), dan R² 0,917 (vs. 0,812), mengindikasikan kemampuannya menangkap interaksi non-linear antarfitur statis seperti GT dan LOA lebih efektif dalam konteks operasional pelabuhan ini. Temuan ini merekomendasikan penerapan Random Forest sebagai model prediktif dalam sistem pendukung keputusan alokasi dermaga untuk meningkatkan efisiensi dan mengurangi waiting time kapal
References
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Pratama, R., Sutanto, D., & Muhajirin, A. (2024). Static ship characteristics as dominant factors in berth scheduling at tramp trade ports: Evidence from Indonesia. International Journal of Shipping and Transport Logistics, 16(1), 78–97. https://doi.org/10.1504/IJSTL.2024.134821
Sutrisno, E., & Basuki, A. (2023). Dampak keterlambatan sandar kapal terhadap biaya logistik di pelabuhan Indonesia. Jurnal Ekonomi Maritim Indonesia, 8(2), 112–127. https://doi.org/10.31315/jemi.v8i2.102
Abdelmaguid, T. F., & El-Awady, A. A. (2021). A decision support system for berth scheduling under uncertainty using hybrid metaheuristics. Computers & Industrial Engineering, 159, 107407. https://doi.org/10.1016/j.cie.2021.107407
Aydin, N., & Kara, B. Y. (2020). Predicting ship arrival times using machine learning methods. Maritime Policy & Management, 47(7), 923–941. https://doi.org/10.1080/03088839.2019.1674439
Bahri, M., Burhanuddin, M. A., & Saman, M. Y. M. (2018). A study of berth allocation problem with priority and stochastic handling time. International Journal of Industrial Engineering Computations, 9(2), 177–190. https://doi.org/10.5267/j.ijiec.2017.10.002
Chen, J., Zhang, G., & Zhang, Y. (2022). A hybrid deep learning model for vessel arrival time prediction in smart ports. Ocean Engineering, 266, 112876. https://doi.org/10.1016/j.oceaneng.2022.112876
Corchado, J. M., Bajo, J., Abraham, A., & Corchado, E. (2020). Intelligent systems for port logistics: A survey. Applied Soft Computing, 95, 106595. https://doi.org/10.1016/j.asoc.2020.106595
Dulebenets, M. A. (2021). A novel multi-objective optimization algorithm for berth scheduling. Applied Sciences, 11(5), 2341. https://doi.org/10.3390/app11052341
Fahmi, I., & Pratama, R. (2022). Analisis efisiensi operasional dermaga menggunakan metode Data Envelopment Analysis (DEA) di Pelabuhan Tanjung Priok. Jurnal Teknik Industri, 23(1), 45–56. https://doi.org/10.22219/jtiunmer.v23i1.18732
Golias, M. M., Boile, M., & Theofanis, S. (2019). A multi-objective decision support methodology for berth scheduling under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 124, 1–18. https://doi.org/10.1016/j.tre.2019.01.012
Karam, A., & Eltawil, A. B. (2021). A machine learning approach for predicting vessel turnaround time in container terminals. Transportation Research Procedia, 52, 531–538. https://doi.org/10.1016/j.trpro.2021.02.071
Liu, C., & Wang, X. (2023). Comparative study of deep learning and ensemble methods for port operation forecasting. Journal of Marine Science and Engineering, 11(2), 321. https://doi.org/10.3390/jmse11020321
Meng, Q., & Wang, X. (2020). Predicting vessel service time using hybrid machine learning models: A case study of Singapore Port. Maritime Economics & Logistics, 22(4), 502–520. https://doi.org/10.1057/s41278-019-00142-8
Nugroho, A. D., & Sutrisno, E. (2020). Peningkatan efisiensi pelabuhan melalui optimasi penjadwalan sandar kapal berbasis heuristik. Jurnal Teknik Sipil ITB, 27(3), 215–228. https://doi.org/10.5614/jts.2020.27.3.5
Perwira, M., Hidayat, D., & Wijaya, R. (2021). Penerapan Random Forest untuk prediksi waktu pelayanan kapal di Pelabuhan Belawan. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(4), 712–720. https://doi.org/10.25126/jtiik.2021843992
Rodriguez-Martin, I., Salazar-Gonzalez, J. J., & Santos-Hernandez, B. (2022). Solving the discrete berth allocation problem with stochastic vessel handling times. European Journal of Operational Research, 297(2), 584–598. https://doi.org/10.1016/j.ejor.2021.05.035
Santoso, A., & Wicaksono, B. D. (2019). Analisis sistem antrian dalam optimasi pelayanan kapal di Pelabuhan Tanjung Pandan. Jurnal Logistik Indonesia, 12(1), 33–45.
Wang, H., Zhang, D., & Zhang, Z. (2021). A comparative analysis of LSTM and XGBoost for time-series prediction in maritime operations. IEEE Access, 9, 102249–102260. https://doi.org/10.1109/ACCESS.2021.3096742.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Andy Achmad Hendharsetiawan, Adi Muhajirin, Alwi Rina Riyanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright :
Authors who publish their manuscripts in this journal agree to the following conditions:
- Copyright in each article belongs to the author.
- The author acknowledges that the DIT has the right to be the first to publish under a Creative Commons Attribution 4.0 International license (Attribution 4.0 International CC BY 4.0).
- Authors can submit articles separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal to other versions (for example, sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time at DIT.






















