Mapping Sentiment towards Danantara: A Combined Clustering and Text- Based Predictive Model

Authors

  • Santi Dwi Desy Lestari Airlangga University
  • Imam Yuadi Airlangga Univeristy

DOI:

https://doi.org/10.38035/jlph.v5i6.2295

Keywords:

Sensitivity Analysis, Clustering, Classification, Predictive Model

Abstract

Research aims to map public sentiment towards Danantara with the integration of clustering and text-based predictive models from social media data. Clustering using K-means obtained three clusters namely political criticism, neutral and prositive support. Linear SVM model performed best with 96% accuracy, followed by random forest (93%), Logistic Regression (90%) and Naïve Bayes (83%). The findings confirm that the public is highly sensitive to issues of transparency and governance in the establishment of Danantara, and the need for a responsive, data-driven public communication strategy. This research contributes to the public opinion monitoring system for national strategic policies.

References

Albalawi, R., & Yeap, T. H. (2021). A Review of Opinion Mining and Sentiment Analysis Techniques. Future Internet, 13(1), 1-20. https://doi.org/10.3390/fi13010001

Chen, Y., Zhang, X., & Li, P. (2022). Comparative Study of SVM and Random Forest for Sentiment Classification. Journal of Applied Computing and Informatics, 8(3), 45-57.

Gao, L., & Li, Y. (2022). Evaluating K-Means clustering on short text represented by TF- IDF. International Journal of Data Science, 7(2), 112-125. https://doi.org/10.1016/j.ijdatasci.2022.04.0 07

Ghani, R., Kumar, V., & Awan, M. (2020). A CRISP-DM Based Framework for Opinion Mining from Social Media Data. International Journal of Advanced Computer Science and Applications, 11(5), 84-90. https://doi.org/10.14569/IJACSA.2020.011 0511

Gupta, A., Singh, R., & Verma, S. (2021). Robust model evaluation through sensitivity analysis in text classification. Machine Learning Review, 10(1), 78-92. https://doi.org/10.1016/j.mlrev.2021.05.003

Harahap, M. A., Santoso, H. B., & Hasibuan, Z.A. (2023). Analyzing Sentiment on Public Policy Discourse in Indonesia Using Text Mining. Journal of Data and Information Science, 8(1),34-47. https://doi.org/10.2478/jdis-2023-0003

Hen, Y.,Zhang, X., & Li, P. (2022). Comparative study of SVM and Random Forest for sentiment classification.

Journal of Applied Computing and Informatics, 8(3), 45-57. https://doi.org/10.1016/j.jaci.2022.03.002 Journal of Applied Data Sciences. (2023). NLP and text mining techniques in social opinion monitoring: A case in public sector. Journal of Applied Data Sciences, 4(2), 65-77. https://bright- journal.org/Journal/index.php/JADS/article /download/134/123

Kurniawan, F., & Salim, D. (2023). Public perception mapping using K-Means and XGBoost: A case study. Indonesian Journal of Data Analytics, 5(1), 21-35. https://doi.org/10.21009/ijdanalytics.2023.0 5103

Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L. E., & Brown, D. (2022). Text Classification Algorithms: A Survey. Information, 13(1), 1-30. https://doi.org/10.3390/info13010019

Li, H., Wang, J., & Chen, L. (2024). Text mining methods in political sentiment analysis: A review. Journal of Political Text Mining, 2(1), 15-29. https://doi.org/10.1016/j.jptm.2024.01.002

Mukhtar, S., Ahmed, R., & Tariq, M. (2023). Short text clustering with TF-IDF and K- Means: Application to opinion mining. Journal of Computational Text Analysis, 6(4), 200-217. https://doi.org/10.1016/j.jcta.2023.10.005

P?v?loaia, V. D. (2024). Clustering algorithms in sentiment analysis techniques in social media: A rapid literature review. Review of Applied Informatics, 3(1), 1-11. https://www.researchgate.net/publication/3 79521493

Rahmawati, T., Prasetyo, E., & Siregar, M. (2023). Public reaction to wealth fund announcement: A preliminary study. Indonesian Journal of Social Media Studies, 4(2),55-70. https://doi.org/10.21009/ijsms.2023.04204

Setiawan, E., & Pratama, A. (2024). Analyzing public concerns on sovereign wealth fund in Indonesia. Asia-Pacific Journal of Public Policy, 3(1), 48-62. https://doi.org/10.21009/apjpp.2024.03105

Song, Y., Kim, H., & Jang, S. (2024). Bridging classic and neural models in sentiment classification for policy analysis. International Journal of NLP Research, 6(1), 17-30. https://doi.org/10.1016/j.ijnlp.2024.01.004

Tahvili, S., Tondel, A., & Johansson, B. (2025). Cluster validity and optimization in text mining: A benchmarking study. Applied Soft Computing, 144, 110150. https://doi.org/10.1016/j.asoc.2024.110150

Yulianti, D., & Nugroho, R. (2022). Qualitative insights into public trust on national wealth management. Journal of Regulatory Affairs, 9(3), 101-116. https://doi.org/10.21009/jra.2022.09302

Zhang, Y., Jin, R., & Zhou, Z.-H. (2021). Understanding SVM for Text Classification. ACM Computing Surveys, 54(2), 1-34. https://doi.org/10.1145/3446384

Downloads

Published

2025-09-21

How to Cite

Lestari, S. D. D., & Yuadi, I. (2025). Mapping Sentiment towards Danantara: A Combined Clustering and Text- Based Predictive Model. Journal of Law, Politic and Humanities, 5(6), 5104–5111. https://doi.org/10.38035/jlph.v5i6.2295